Resolving heterogeneity on the single molecular level with the photon-counting histogram.

نویسندگان

  • J D Müller
  • Y Chen
  • E Gratton
چکیده

The diffusion of fluorescent particles through a small, illuminated observation volume gives rise to intensity fluctuations caused by particle number fluctuations in the open observation volume and the inhomogeneous excitation-beam profile. The intensity distribution of these fluorescence fluctuations is experimentally captured by the photon-counting histogram (PCH). We recently introduced the theory of the PCH for diffusing particles (Chen et al., Biophys. J., 77:553-567), where we showed that we can uniquely describe the distribution of photon counts with only two parameters for each species: the molecular brightness of the particle and the average number of particles within the observation volume. The PCH is sensitive to the molecular brightness and thus offers the possibility to separate a mixture of fluorescent species into its constituents, based on a difference in their molecular brightness alone. This analysis is complementary to the autocorrelation function, traditionally used in fluorescence fluctuation spectroscopy, which separates a mixture of species by a difference in their diffusion coefficient. The PCH of each individual species is convoluted successively to yield the PCH of the mixture. Successful resolution of the histogram into its components is largely a matter of the signal statistics. Here, we discuss the case of two species in detail and show that a concentration for each species exists, where the signal statistics is optimal. We also discuss the influence of the absolute molecular brightness and the brightness contrast between two species on the resolvability of two species. A binary dye mixture serves as a model system to demonstrate that the molecular brightness and the concentration of each species can be resolved experimentally from a single or from several histograms. We extend our study to biomolecules, where we label proteins with a fluorescent dye and show that a brightness ratio of two can be resolved. The ability to resolve a brightness ratio of two is very important for biological applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of bin time on the photon counting histogram for one-photon excitation.

We have demonstrated that our photon counting histogram (PCH) model with the correction for one-photon excitation is valid at multiple bin times. The fitted apparent brightness and concentration follow the three-dimensional diffusion model. More importantly, the semi-empirical parameter, F, introduced in the PCH model for one-photon excitation to correct for the non-Gaussian shape of the observ...

متن کامل

The photon counting histogram in fluorescence fluctuation spectroscopy.

Fluorescence correlation spectroscopy (FCS) is generally used to obtain information about the number of fluorescent particles in a small volume and the diffusion coefficient from the autocorrelation function of the fluorescence signal. Here we demonstrate that photon counting histogram (PCH) analysis constitutes a novel tool for extracting quantities from fluorescence fluctuation data, i.e., th...

متن کامل

The dual-color photon counting histogram with non-ideal photodetectors.

Dual-color photon counting histogram (PCH) analysis utilizes the photon counts in two detection channels to distinguish species by differences in brightness and color. Here we modify the existing dual-color PCH theory, which assumes ideal detectors, to include the non-ideal nature of the detector. Specifically, we address the effects of deadtime and afterpulsing. Both effects modify the shape o...

متن کامل

A Non-Demolition Photon Counting Method by Four-Level Inverted Y-Type Atom

The semi-classical model of atom-field interaction has been fully studied for some multilevel atoms, e.g. Vee, L, Cascade X , Y, and inverted Y and so on. This issue is developed into the full-quantum electrodynamics formalism, where the probe and coupling electromagnetic fields are quantized. In this article, we investigate the full-quantum model of absorption and dispersion spectrum of trappe...

متن کامل

Quantitative determination of the single-molecule detection regime in fluorescence fluctuation microscopy by means of photon counting histogram analysis.

Fluorescence fluctuation experiments are performed in single-molecule detection regime if the fluorescence of at most one molecule is registered at a time. Although the significance of such experiments for investigations of complex nonergodic systems like those met in the biosciences has been stressed out by many scientists, the quantitative and accurate determination of the single-molecule det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 78 1  شماره 

صفحات  -

تاریخ انتشار 2000